cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372125 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 4*x*A(x))^(1/2) ).

Original entry on oeis.org

1, 1, 4, 13, 60, 256, 1252, 5979, 30360, 153626, 801632, 4197284, 22355788, 119695396, 647666544, 3522773337, 19298660772, 106213538104, 587632185580, 3264011196578, 18203515158400, 101862717712340, 571859834176800, 3219573318768300, 18175140989890716
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n+k, k)*binomial(k/2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 4^(n-k) * binomial(n+k,k) * binomial(k/2,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378554(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x*(1 + 4*x)^(1/2))^(n+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x*(1 + 4*x)^(1/2)) ). (End)

A372136 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2*(1 + 9*x*A(x))^(1/3) ).

Original entry on oeis.org

1, 1, 6, 24, 199, 1023, 9363, 53724, 514422, 3147234, 30860724, 197222004, 1959430572, 12936907792, 129445924524, 877093068720, 8806256385699, 60967636162677, 612785441368254, 4321431024295452, 43413113117835945, 311142782601086949, 3120889714454477613
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+2*k, k)*binomial(k/3, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+2*k,k) * binomial(k/3,n-k)/(n+k+1).

A378555 a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+k-1,k) * binomial(k/3,n-k).

Original entry on oeis.org

1, 1, 9, 19, 305, 156, 13233, -23988, 688113, -2863070, 41085704, -246536784, 2696513885, -19410931916, 187672944300, -1481383572516, 13522625165601, -111877103550195, 994511499413664, -8430550720540365, 74061353032540020, -636000265949289978
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[1/(1 - x*(1 + 9*x)^(1/3))^n,{x,0,n}]; Array[a,22,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k-1, k)*binomial(k/3, n-k));

Formula

a(n) = [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^n.
Showing 1-3 of 3 results.