cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372126 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 9*x*A(x))^(1/3) ).

Original entry on oeis.org

1, 1, 5, 11, 95, 150, 2688, -111, 98489, -215578, 4416842, -18887063, 230670421, -1356589436, 13381147908, -92724422022, 831047516316, -6277471705749, 53925750947589, -426682784513559, 3602138266461603, -29250145766625450, 245524688963062050
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k, k)*binomial(k/3, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 9^(n-k) * binomial(n+k,k) * binomial(k/3,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378555(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^(n+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x*(1 + 9*x)^(1/3)) ). (End)

A378554 a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n+k-1,k) * binomial(k/2,n-k).

Original entry on oeis.org

1, 1, 7, 28, 171, 846, 4942, 26580, 153363, 856900, 4939682, 28140476, 162676878, 936947116, 5436375532, 31526252208, 183571246659, 1069552636950, 6247183319938, 36524006501180, 213899020967786, 1253905101529080, 7359775341696180, 43237184121401400
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[1/(1 - x*(1 + 4*x)^(1/2))^n,{x,0,n}]; Array[a,24,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n+k-1, k)*binomial(k/2, n-k));

Formula

a(n) = [x^n] 1/(1 - x*(1 + 4*x)^(1/2))^n.
Showing 1-2 of 2 results.