A362161
Expansion of e.g.f. exp(-x * sqrt(1-4*x)).
Original entry on oeis.org
1, -1, 5, -1, 121, 1039, 20221, 416975, 10573361, 309650399, 10335294901, 386839539679, 16045117551145, 730346985279599, 36191355037097261, 1939288174467052079, 111724538085236200801, 6886112439557645126335, 452112545350761238085221
Offset: 0
A362163
Expansion of e.g.f. -exp(x * sqrt(1-2*x)).
Original entry on oeis.org
-1, -1, 1, 8, 23, 64, 479, 6026, 80863, 1194488, 19951919, 374005774, 7768598111, 177019006748, 4389955280983, 117700126685714, 3392361648663359, 104592876994535056, 3434908279968850463, 119702402510430502358, 4411764405014665620799
Offset: 0
A052142
Expansion of e.g.f. exp(x/(1-4*x)^(1/2)).
Original entry on oeis.org
1, 1, 5, 49, 697, 12881, 291901, 7823425, 241878449, 8469678817, 331194361141, 14301627569681, 675802760007145, 34681947121134769, 1920727213363900397, 114166002761833118881, 7248797582463164166241, 489621781318487529974465
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191.
-
CoefficientList[Series[E^(x/(1-4*x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
-
a(n):=n!*sum((sum(2^k*k/(n-m)*binomial(2*(n-m)-k-1,n-m-1)*binomial(k+m-1,m-1),k,1,n-m))/m!,m,1,n-1)+1; /* Vladimir Kruchinin, Sep 10 2010 */
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/sqrt(1-4*x)))) \\ Joerg Arndt, Jan 30 2024
Showing 1-3 of 3 results.