A362260 Maximum over 0 <= k <= n/2 of the number of permutations of two symbols occurring k and n-2*k times, respectively, where a permutation and its reversal are counted only once.
1, 1, 1, 1, 2, 2, 4, 6, 9, 12, 19, 28, 44, 66, 110, 170, 255, 396, 651, 1001, 1519, 2520, 4032, 6216, 9752, 15912, 25236, 38760, 63090, 101850, 160050, 248710, 408760, 653752, 1021735, 1634776, 2656511, 4218786, 6562556, 10737090, 17299646, 27313650, 43249115
Offset: 0
Keywords
Examples
For n = 8, the maximum a(8) = 9 is obtained for k = 2. The corresponding permutations of 2 2's and 4 1's are 221111, 212111, 211211, 211121, 211112, 122111, 121211, 121121, and 112211.
Links
- Robert Israel, Table of n, a(n) for n = 0..4771
Crossrefs
Programs
-
Maple
f:= proc(n) local k, v, m,w; m:= 0: for k from 0 to n/2 do v:= binomial(n-k,k); if n:: even and k::even then w:= binomial((n-k)/2,k/2) elif (n-k)::odd then w:=binomial((n-k-1)/2, floor(k/2)) else w:= 0 fi; m:= max(m,(v+w)/2); od; m end proc: map(f, [$0..50]); # Robert Israel, Oct 25 2023
Formula
a(n) >= A073028(n)/2.
Comments