cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362288 a(n) = Product_{k=0..n} binomial(n,k)^k.

Original entry on oeis.org

1, 1, 2, 27, 9216, 312500000, 4251528000000000, 95432797246104853383515625, 14719075154533285649961930052505436160000, 65577306173662530591576256095315195684570038194755952705536
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n, k]^k, {k, 0, n}], {n, 0, 10}]
    Table[(n!)^(n*(n+1)/2) / BarnesG[n+2]^n, {n, 0, 10}]
  • PARI
    a(n) = prod(k=0, n, binomial(n,k)^k); \\ Michel Marcus, Apr 14 2023

Formula

a(n) = Product_{k=0..n} n!^k / k!^n.
a(n) = A067055(n) / A255268(n).
a(n) ~ A^n * exp((6*n^3 + 12*n^2 - n - 1)/24) / ((2*Pi)^(n*(n+1)/4) * n^(n*(3*n+2)/12)), where A is the Glaisher-Kinkelin constant A074962.