cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362310 Irregular triangle read by rows (row length A056220). Row n lists the integer solutions for x in the equation x - 10^n = x/y (x and y are integers).

Original entry on oeis.org

2, 5, 8, 9, 11, 12, 15, 20, 50, 75, 80, 90, 95, 96, 98, 99, 101, 102, 104, 105, 110, 120, 125, 150, 200, 500, 750, 800, 875, 900, 950, 960, 975, 980, 990, 992, 995, 996, 998, 999, 1001, 1002, 1004, 1005, 1008, 1010, 1020, 1025, 1040, 1050, 1100, 1125, 1200, 1250, 1500, 2000
Offset: 0

Views

Author

Thomas Scheuerle, Apr 15 2023

Keywords

Examples

			Triangle begins:
  2
  5, 8, 9, 11, 12, 15, 20
  50, 75, 80, 90, 95, 96, 98, 99, 101, 102, 104, 105, 110, 120, 125, 150, 200
  ...
Corresponding values for y in the equation:
   2
  -1,-4,-9, 11, 6, 3, 2
  -1,-3,-4,-9,-19,-24,-49,-99, 101, 51, 26, 21, 11, 6, 5, 3, 2
		

Crossrefs

Programs

  • MATLAB
    function a = A362310( max_row )
        r = 2; a= [];
        for n = 1:max_row
            d = divisors(10^(n-1));
            a = [a 10^(n-1)-d(end-1:-1:1) 10^(n-1)+d];
        end
    end
  • PARI
    row(n) = {my(d = divisors(10^n));my(v = concat(vector((n+1)^2,t,10^n)-Vecrev(d),vector((n+1)^2,t,10^n)+d));v[^1]};
    

Formula

Sum of row n = 2*(n+1)^2*10^n.
T(n, k) = 10^n - A056538(10^n, k+2), k < (n+1)^2-1.
T(n, k) = 10^n + A027750(10^n, k+2 - (n+1)^2), (n+1)^2-2 < k < 2*(n+1)^2-1.