A362348
a(n) = n! * Sum_{k=0..floor(n/3)} k^k / (k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, 7, 25, 61, 1561, 10291, 40657, 1754425, 16632721, 90479071, 5469933481, 67591594357, 468224398825, 36386954606731, 554182030325281, 4663003095358321, 442756825853252257, 8014853488848923575, 79354642490200806841, 8901962495566386752941
Offset: 0
A362349
a(n) = n! * Sum_{k=0..floor(n/4)} k^k / (k! * (n-4*k)!).
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 82321, 728785, 3633841, 13313521, 2195435881, 28125394441, 196393341145, 981274727161, 227100486456481, 3807339471993121, 34186011461595361, 216366574074187105, 64438384450412161081, 1335035336388170601241
Offset: 0
A362522
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, 3, 7, 49, 201, 2491, 14743, 266337, 2055889, 49051891, 466650471, 13873711633, 156839920537, 5591748678699, 73222243463671, 3046762637864641, 45346835284775073, 2158148557098011107, 35980450963558606279, 1928292118820446611441
Offset: 0
A362702
Expansion of e.g.f. 1/(1 + LambertW(-x^2 * exp(x))).
Original entry on oeis.org
1, 0, 2, 6, 60, 500, 6150, 81522, 1300376, 23024808, 459915210, 10104914270, 243652575012, 6378414900156, 180405368976014, 5478759958122570, 177868544365861680, 6146407749811022672, 225262698504062963346, 8727083181657584963766
Offset: 0
A362337
a(n) = n! * Sum_{k=0..floor(n/2)} (-k)^k / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, -1, -5, 37, 221, -2549, -21041, 342665, 3604537, -75816809, -970017949, 25012223149, 377031935125, -11513789879773, -199833956857289, 7052339905578001, 138505710577529969, -5546345926322582225, -121599560980889072693, 5447342134797972438581
Offset: 0
Showing 1-5 of 5 results.