cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362393 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)).

Original entry on oeis.org

1, 1, 1, 1, 25, 241, 1441, 6721, 87361, 1729729, 24816961, 270452161, 3705324481, 85344916801, 1992230175937, 38047293910081, 709217112938881, 17385498239168641, 514103858592923521, 14254662916125735553, 366807994235438359681, 10338786602768939575681
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(x)))))

Formula

E.g.f.: exp(x - LambertW(-x^4 * exp(x))) = -LambertW(-x^4 * exp(x))/x^4.
a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(n-3*k-1) / (k! * (n-4*k)!).