A362408 a(n) = [x^n] (F(x)/F(-x))^n where F(x) = (1 + x)*(1 + x^3).
1, 2, 8, 44, 256, 1502, 8912, 53510, 324352, 1980332, 12160008, 75015162, 464566144, 2886488906, 17985045464, 112333392044, 703119387648, 4409231140086, 27696141476336, 174229516043630, 1097501783152256, 6921721148337452, 43701895245221848
Offset: 0
Links
- Wikipedia, Cyclotomic polynomial
Programs
-
Maple
F(x) := (1 + x)*(1 + x^3): G(x) := taylor(F(x)/F(-x),x = 0, 50); seq(coeftayl(G(x)^n, x = 0, n), n = 0..50);
Formula
Conjectures: 1) the supercongruence a(p) == 2 (mod p^3) holds for all primes p >= 5 (checked up to p = 47).
2) for n >= 2, the supercongruence a(n*p) == a(n) (mod p^2) holds for all primes p >= 5.
Comments