cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270913 Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 206, 855, 3585, 15155, 64525, 276278, 1188353, 5130999, 22226049, 96544003, 420368858, 1834203955, 8018057345, 35107961175, 153950675585, 675978772326, 2971700764941, 13078268135683, 57613905606273, 254038914924791, 1121081799217231
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),
           (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> g(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]
    Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 26 2019

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

A270919 Coefficient of x^n in Product_{k>=1} ((1 + x^k) / (1 - x^k))^n.

Original entry on oeis.org

1, 2, 12, 80, 552, 3912, 28224, 206208, 1520784, 11297546, 84413912, 633713808, 4776117216, 36115518376, 273868321536, 2081866609920, 15859616674336, 121046064563376, 925411686479820, 7085465166635440, 54323193841192752, 416993869451825424, 3204447137019290944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^2) holds for all primes p. Cf. A291697. (End)

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[(QPochhammer[-1, x]/QPochhammer[x, x])^n, {x, 0, n}]/2^n, {n, 0, 25}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{2*s*QPochhammer[r*s] == QPochhammer[-1, r*s], (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] + r*((Derivative[0, 1][QPochhammer][-1, r*s] - 2*s*Derivative[0, 1][QPochhammer][r*s, r*s]) / (2*QPochhammer[r*s])) == 1}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[(1 - r*s)*Log[r*s]^2*(QPochhammer[r*s] / (Pi*(-r*s*(-1 + r*s) * Log[r*s]*(4*(2*ArcTanh[1 - 2*r*s] + QPolyGamma[0, 1, r*s])* Derivative[0, 1][QPochhammer][r*s, r*s] + r*Log[r*s]*(Derivative[0, 2][QPochhammer][-1, r*s] - 2*s*Derivative[0, 2][QPochhammer][r*s, r*s])) + 2*QPochhammer[r*s] * (4*r*s*ArcTanh[1 - 2*r*s] + 2*(-1 + (-1 + r*s)*ArcTanh[1 - 2*r*s])*Log[1 - r*s] - (-1 + r*s)*(-2 + Log[r*s] - 2*Log[1 - r*s])*QPolyGamma[0, 1, r*s] + (-1 + r*s) * QPolyGamma[0, 1, r*s]^2 + (-1 + r*s)*(QPolyGamma[1, 1, r*s] - 2*r*s*Log[r*s]* Derivative[0, 0, 1][QPolyGamma][0, 1, r*s])))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.299856802806668079413694689903953367699319...
a(n) = [x^n] 1/theta_4(x)^n, where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A291697 a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^n.

Original entry on oeis.org

1, 2, 8, 44, 256, 1512, 9056, 54896, 335872, 2069774, 12827888, 79875996, 499305472, 3131436856, 19694403520, 124165133424, 784478240768, 4965659813668, 31484486937512, 199923173603596, 1271192603065856, 8092551782518688, 51574780342740256, 329022223268286288, 2100934234342260736
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

From Peter Bala, Apr 18 2023: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^3) holds for all primes p >= 5. Cf. A270919. (End)

Crossrefs

Main diagonal of A289522.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^n, {k, 0, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 24}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == QPochhammer[-r*s, r^2*s^2] / QPochhammer[r*s, r^2*s^2], QPochhammer[r*s, r^2*s^2] + QPochhammer[r*s, r^2*s^2]*((QPolyGamma[0, Log[-r*s]/Log[r^2*s^2], r^2*s^2] - QPolyGamma[0, Log[r*s]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2]) + 2*r^2*s^2*Derivative[0, 1][QPochhammer][r*s, r^2*s^2] == 2*r^2*s*Derivative[0, 1][QPochhammer][-r*s, r^2*s^2]}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)

Formula

a(n) = A289522(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 6.52085730573545526010335599231748172235904... and c = 0.296494808714349908707366708893... - Vaclav Kotesovec, Aug 30 2017
Showing 1-3 of 3 results.