A362421 Number of nonisomorphic vector spaces consisting of n elements.
1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0
Offset: 2
Keywords
Examples
a(16) = 3 because 16=2^4 and 4 has 3 divisors.
Links
- Philip Turecek, Table of n, a(n) for n = 2..1000
Programs
-
Sage
def f(a): if not a.is_prime_power(): return 0 else: return sigma(factor(a)[0][1],0)
Formula
a(n) = a(p^k) = sigma_0(k) if n = p^k is a prime power, a(n) = 0 otherwise.
Comments