A381716
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into constant blocks with distinct sums.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into constant multisets with distinct sums:
{{1,1,1,1,1,1},{2,2},{2}}
{{1,1,1,1,1},{1},{2,2,2}}
{{1,1,1,1,1},{1},{2,2},{2}}
{{1,1,1,1},{1,1},{2,2,2}}
{{1,1,1},{1,1},{1},{2,2,2}}
with block-sums: {1,5,6}, {2,4,6}, {1,2,3,6}, {1,2,4,5}, so a(1728) = 4.
For distinct blocks instead of sums we have
A381715.
Cf.
A000720,
A001222,
A002846,
A005117,
A050361,
A213242,
A265947,
A293511,
A299202,
A300385,
A362421.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mce[y_]:=Table[ConstantArray[y[[1]],#]&/@ptn,{ptn,IntegerPartitions[Length[y]]}];
Table[Length[Union[Sort[Total/@#]&/@Select[Join@@@Tuples[mce/@Split[prix[n]]],UnsameQ@@Total/@#&]]],{n,100}]
A381715
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
{{2,2,2},{1,1,1,1,1,1}}
{{1},{2,2,2},{1,1,1,1,1}}
{{2},{2,2},{1,1,1,1,1,1}}
{{1,1},{2,2,2},{1,1,1,1}}
{{1},{2},{2,2},{1,1,1,1,1}}
{{1},{1,1},{1,1,1},{2,2,2}}
{{2},{1,1},{2,2},{1,1,1,1}}
{{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
{6,6}
{1,5,6}
{2,4,6}
{2,4,6}
{1,2,4,5}
{1,2,3,6}
{2,2,4,4}
{1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
Positions of terms > 1 are
A046099.
For equal instead of distinct blocks we have
A362421.
For strict instead of constant blocks we have
A381441, before sums
A050326.
A003963 gives product of prime indices.
Cf.
A000720,
A001222,
A002846,
A005117,
A050342,
A213242,
A213385,
A293511,
A299202,
A300385,
A317142,
A381870.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]
Showing 1-2 of 2 results.
Comments