A362434 Numbers that can be written as A000045(i) + j^2 for i,j>=0 in 4 ways.
17, 5185, 1669265, 537497857, 173072640401, 55728852710977, 17944517500293905, 5778078906241926145, 1860523463292399924497, 599082777101246533761601, 192902793703138091471310737, 62114100489633364207228295425, 20000547454868240136636039815825, 6440114166367083690632597592399937
Offset: 1
Keywords
Examples
17 = A000045(1) + 4^2 = A000045(2) + 4^2 = A000045(6) + 3^2 = A000045(7) + 2^2. 5185 = A000045(1) + 72^2 = A000045(2) + 72^2 = A000045(12) + 71^2 = A000045(18) + 51^2. 1669265 = A000045(1) + 1292^2 = A000045(2) + 1292^2 = A000045(18) + 1291^2 = A000045(30) + 915^2. 537497857 = A000045(1) + 23184^2 = A000045(2) + 23184^2 = A000045(24) + 23183^2 = A000045(42) + 16419^2.
Programs
-
Maple
N:= 10^6: # to get terms <= N V:= Array(0..N, datatype=integer[1]): for i from 0 do f:= combinat:-fibonacci(i); if f > N then break fi; s:= floor(sqrt(N-f)); J:=[seq(f+i^2, i=0..s)]; V[J]:= V[J] +~ 1; od: select(i -> V[i] >= 4, [$1..N]);
-
PARI
A362503(n) = my(f, s=0); for(i=0, oo, if(n
sqrtint(y), break); t=y/d-d; if(t%2==0, for(k=0, j-1, if(issquare(t^2+4*(x-fibonacci(k))), listput(v, x+t^2/4))))))); v=Set(v); for(i=1, #v, if(v[i]>nn, break); if(A362503(v[i])==4, print1(v[i], ", "))); \\ Jinyuan Wang, Apr 24 2023
Formula
Extensions
More terms from Jinyuan Wang, Apr 23 2023
Comments