A362483 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 1, 1, 1, 4, 19, 70, 1, 1, 1, 5, 28, 169, 646, 1, 1, 1, 6, 37, 298, 2041, 7576, 1, 1, 1, 7, 46, 457, 4186, 30811, 106744, 1, 1, 1, 8, 55, 646, 7081, 74116, 560827, 1761628, 1, 1, 1, 9, 64, 865, 10726, 141901, 1578340, 11957905, 33361948, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 10, 19, 28, 37, 46, ... 1, 70, 169, 298, 457, 646, ... 1, 646, 2041, 4186, 7081, 10726, ...
Links
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
PARI
T(n, k) = n! * sum(j=0, n\2, (k/2)^j*(2*j+1)^(n-j-1)/(j!*(n-2*j)!));
Formula
E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^2/2 * A_k(x)^2).
A_k(x) = exp(x - LambertW(-k*x^2 * exp(2*x))/2).
A_k(x) = sqrt( -LambertW(-k*x^2 * exp(2*x))/(k*x^2) ) for k > 0.