cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A362484 Irregular table read by rows in which the n-th row consists of all the numbers m such that iphi(m) = n, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 5, 10, 7, 12, 14, 24, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 40, 42, 16, 32, 17, 27, 34, 54, 19, 28, 38, 56, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 72, 78, 120, 29, 58, 31, 44, 48, 62, 88, 96, 45, 51, 90, 102, 37, 52, 57, 74, 84, 104, 114, 168
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  -----------------------
   1  1, 2;
   2  3, 6;
   3  4, 8;
   4  5, 10;
   5
   6  7, 12, 14, 24;
   7
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 40, 42;
		

Crossrefs

Cf. A091732, A162247, A362485 (row lengths).
Similar sequences: A032447, A361966, A362213, A362180.

Programs

  • Mathematica
    powQ[n_] := n == 2^IntegerExponent[n, 2]; powfQ[n_] := Length[fact = FactorInteger[n]] == 1 && powQ[fact[[1, 2]]];
    invIPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && AllTrue[# + 1, powfQ] &]); Sort@ Join[sol, 2*sol]]; invIPhi[1] = {1, 2};
    Table[invIPhi[n], {n, 1, 36}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A362486 Infinitary nontotient numbers: values not in the range of the infinitary totient function iphi (A091732).

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 47, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 107, 109, 110, 111
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

Numbers k such that A091732(x) = k has no solution, i.e., A362485(k) = 0.
Most of the odd numbers are in this sequence. Odd numbers that are not here are 1, 3, 15, 45, 255, 765, 3825, 11475, 65535, 196605, 983025, ..., which are the values of iphi at powers of 2.

Crossrefs

Similar sequences: A005277, A005278, A347771, A362182.

Programs

  • Mathematica
    Select[Range[120], Length[invIPhi[#]] == 0 &] (* using the function invIPhi from A362484 *)

Formula

A362485(a(n)) = 0.

A362487 Infinitary highly totient numbers: numbers k that have more solutions x to the equation iphi(x) = k than any smaller k, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 6, 12, 24, 48, 96, 144, 240, 288, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 34560, 51840, 69120, 103680, 120960, 172800, 207360, 241920, 345600, 362880, 414720, 483840, 725760, 967680, 1209600, 1451520, 1935360, 2419200, 2903040, 3628800
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

Indices of records of A362485.
The corresponding numbers of solutions are 2, 4, 6, 10, 14, 18, 22, ... (A362488).

Crossrefs

Programs

  • Mathematica
    solnum[n_] := Length[invIPhi[n]]; seq[kmax_] := Module[{s = {}, solmax=0}, Do[sol = solnum[k]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^4] (* using the function invIPhi from A362484 *)

A362664 Numbers k with exactly two solutions x to the equation iphi(x) = k, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 2, 3, 4, 10, 15, 20, 22, 28, 42, 44, 45, 46, 52, 54, 56, 58, 70, 78, 82, 92, 100, 102, 104, 106, 116, 130, 136, 140, 148, 162, 164, 166, 172, 174, 178, 184, 190, 196, 200, 204, 208, 212, 220, 222, 226, 228, 234, 238, 246, 250, 255, 260, 262, 268, 272, 282, 292, 296
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2023

Keywords

Comments

Numbers k such that A362485(k) = 2.
There are no numbers k with a single solution to iphi(x) = k, because if iphi(x) = k, and A007814(x) is even, then 2*x is also a solution, i.e., iphi(2*x) = k.

Crossrefs

Similar sequences: A361969, A362185.

Programs

  • Mathematica
    Select[Range[300], Length[invIPhi[#]] == 2 &] (* using the function invIPhi from A362484 *)

A362488 Record values in A362487.

Original entry on oeis.org

2, 4, 6, 10, 14, 18, 22, 30, 34, 40, 48, 58, 60, 92, 136, 146, 184, 232, 240, 342, 478, 518, 638, 772, 830, 924, 1080, 1264, 1330, 1340, 1462, 1824, 2132, 2528, 2710, 3224, 3354, 4084, 4672, 4812, 4976, 5912, 6496, 7606, 8230, 8698, 11472, 12354, 16580, 19250
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Crossrefs

Similar sequences: A101373, A131934, A361971, A362184.

Programs

  • Mathematica
    solnum[n_] := Length[invIPhi[n]]; seq[kmax_] := Module[{s = {}, solmax=0}, Do[sol = solnum[k]; If[sol > solmax, solmax = sol; AppendTo[s, sol]], {k, 1, kmax}]; s]; seq[10^4] (* using the function invIPhi from A362484 *)

Formula

a(n) = A362485(A362487(n)).

A362489 a(n) is the least number k such that the equation iphi(x) = k has exactly 2*n solutions, or -1 if no such k exists, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

5, 1, 6, 12, 36, 24, 396, 48, 216, 96, 528, 144, 384, 2784, 432, 240, 1296, 288, 1584, 1800, 480, 1680, 1080, 864, 576, 3240, 2016, 960, 6624, 720, 1152, 7776, 12000, 8448, 5280, 1728, 10752, 2304, 4032, 4800, 6048, 3840, 2160, 5184, 4608, 6336, 1440, 10560, 29568
Offset: 0

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

a(n) is the least number k such that A362485(k) = 2*n. Odd values of A362485 are impossible.
Is there any n for which a(n) = -1?

Crossrefs

Similar sequences: A007374, A063507, A361970, A362186.

Programs

  • Mathematica
    solnum[n_] := Length[invIPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k]/2 + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invIPhi from A362484 *)
Showing 1-6 of 6 results.