cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362518 Number of vertex cuts in the n-helm graph.

Original entry on oeis.org

1, 12, 71, 354, 1617, 7020, 29563, 122214, 499493, 2026848, 8186895, 32969754, 132508729, 531842196, 2132610467, 8545773774, 34228238925, 137046552264, 548583066679, 2195514451074, 8785586531681, 35152894560252, 140643143849931, 562667104454454, 2250951652660597
Offset: 1

Views

Author

Eric W. Weisstein, Apr 23 2023

Keywords

Comments

Sequence extended to n = 1 using the formula/recurrence.

Crossrefs

Cf. A286184.

Programs

  • Mathematica
    Table[(2^n - 1) (1 + 2^(n + 1) - n) - 3^n, {n, 20}]
    LinearRecurrence[{13, -67, 175, -244, 172, -48}, {1, 12, 71, 354, 1617, 7020}, 20]
    CoefficientList[Series[(1 - x - 18 x^2 + 60 x^3 - 84 x^4 + 48 x^5)/((-1 + x)^2 (-1 + 2 x)^2 (-1 + 3 x) (-1 + 4 x)), {x, 0, 20}], x]

Formula

a(n) = 2^(2*n+1) - 1 - A286184(n). - Pontus von Brömssen, Apr 23 2023
a(n) = (2^n - 1)*(1 + 2^(n + 1) - n) - 3^n.
a(n) = 13*a(n-1)-67*a(n-2)+175*a(n-3)-244*a(n-4)+172*a(n-5)-48*a(n-6).
G.f.: x*(1 - x - 18*x^2 + 60*x^3 - 84*x^4 + 48*x^5)/((-1 + x)^2*(-1 + 2*x)^2*(-1 + 3*x)*(-1 + 4*x)).

Extensions

More terms (based on data in A286184) from Pontus von Brömssen, Apr 23 2023