A362540 Number of chordless cycles of length >= 4 in the n-flower graph.
3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071, 229029, 552199, 1332375, 3215807, 7762611, 18739607, 45240309, 109217983, 263673699, 636563527, 1536798717, 3710157407, 8957109801, 21624374039, 52205854257, 126036078751, 304278008331, 734592089095
Offset: 2
Links
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Flower Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,4,-2,-4,7,-8,6,4,-6,0,1).
Crossrefs
Cf. A362545.
Programs
-
Mathematica
LinearRecurrence[{4, -5, 4, -2, -4, 7, -8, 6, 4, -6, 0, 1}, {3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071}, 20] CoefficientList[Series[(-3 - 11 x + 14 x^2 + 22 x^3 + 6 x^4 + 68 x^5 - 9 x^6 - 19 x^7 + 25 x^8 - 13 x^9 - 9 x^10 + x^11)/((-1 + x)^3 (1 - x - x^2 - 3 x^3 - 5 x^4 - 3 x^5 - 4 x^6 + 3 x^8 + x^9)), {x, 0, 20}], x] Table[(1 + (-1)^n)/2 + 2 (-I)^n ChebyshevT[n, I] + 3 (n - 2) n + RootSum[-1 + # + #^3 &, #^n &] + RootSum[1 + # + #^3 &, #^n &], {n, 2, 20}]
Formula
From Andrew Howroyd, Apr 26 2023: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 2*a(n-4) - 4*a(n-5) + 7*a(n-6) - 8*a(n-7) + 6*a(n-8) + 4*a(n-9) - 6*a(n-10) + a(n-12).
G.f.: x^2*(3 + 11*x - 14*x^2 - 22*x^3 - 6*x^4 - 68*x^5 + 9*x^6 + 19*x^7 - 25*x^8 + 13*x^9 + 9*x^10 - x^11)/((1 - x)^3*(1 + x)*(1 - 2*x - x^2)*(1 + x^2 - x^3)*(1 + x^2 + x^3)). (End)
2*a(n) = -2*(-1)^n*A112455(n) +1+6*n^2-12*n+(-1)^n-2*A112455(n)+4*A001333(n). - R. J. Mathar, Feb 18 2024
Extensions
a(2)-a(4) and a(17) and beyond from Andrew Howroyd, Apr 26 2023
Comments