cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362545 Number of odd chordless cycles of length >4 in the (2n+1)-flower snark.

Original entry on oeis.org

1, 13, 81, 477, 2785, 16237, 94641, 551613, 3215041, 18738637, 109216785, 636562077, 3710155681, 21624372013, 126036076401, 734592086397, 4281516441985, 24954506565517, 145445522951121, 847718631141213, 4940866263896161, 28797478952235757, 167844007449518385, 978266565744874557, 5701755387019728961, 33232265756373499213
Offset: 0

Views

Author

Eric W. Weisstein, Apr 24 2023

Keywords

Comments

Sequence extended to n=0 using formula/recurrence.
The (2n)-flower graphs, which generalize the (2n+1)-flower snarks, have no odd chordless cycles of length >=4.

Crossrefs

Cf. A002203 (companion Pell numbers).

Programs

  • Mathematica
    LucasL[2 Range[0, 20] + 1, 2] - 1
    Table[LucasL[2 n + 1, 2] - 1, {n, 0, 20}]
    LinearRecurrence[{7, -7, 1}, {1, 13, 81}, 20]
    CoefficientList[Series[(-1 - 6 x + 3 x^2)/((-1 + x) (1 - 6 x + x^2)), {x, 0, 20}], x]

Formula

a(n) = LucasL(2 n + 1, 2) - 1.
a(n) = 7*a(n-1) - 7*a(n-1) + a(n-2).
G.f.: (-1 - 6*x + 3*x^2)/((-1 + x)*(1 - 6*x + x^2)).