A377726
Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
Original entry on oeis.org
84, 3280, 113764, 3878112, 131820084, 4478459440, 152138450884, 5168244315840, 175568258308884, 5964153062868112, 202605638937276964, 6882627588628286880, 233806732478308836084, 7942546277279354556400, 269812766698548756220804, 9165691521493946935370112
Offset: 1
Triangles begins:
n=1: 13, 84, 85;
n=2: 81, 3280, 3281;
n=3: 477, 113764, 113765;
...
This sequence gives the middle column.
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
-
ra[n_]:=ra[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra-1,2ra^2-2ra,2ra^2-2ra+1}];exradio={};Do[exradio=Join[exradio,FullSimplify[ra[n]]],{n,0,10}];exradio
A362540
Number of chordless cycles of length >= 4 in the n-flower graph.
Original entry on oeis.org
3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071, 229029, 552199, 1332375, 3215807, 7762611, 18739607, 45240309, 109217983, 263673699, 636563527, 1536798717, 3710157407, 8957109801, 21624374039, 52205854257, 126036078751, 304278008331, 734592089095
Offset: 2
- Eric Weisstein's World of Mathematics, Chordless Cycle
- Eric Weisstein's World of Mathematics, Flower Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,4,-2,-4,7,-8,6,4,-6,0,1).
-
LinearRecurrence[{4, -5, 4, -2, -4, 7, -8, 6, 4, -6, 0, 1}, {3, 23, 63, 127, 273, 583, 1287, 2975, 6993, 16535, 39525, 95071}, 20]
CoefficientList[Series[(-3 - 11 x + 14 x^2 + 22 x^3 + 6 x^4 + 68 x^5 - 9 x^6 - 19 x^7 + 25 x^8 - 13 x^9 - 9 x^10 + x^11)/((-1 + x)^3 (1 - x - x^2 - 3 x^3 - 5 x^4 - 3 x^5 - 4 x^6 + 3 x^8 + x^9)), {x, 0, 20}], x]
Table[(1 + (-1)^n)/2 + 2 (-I)^n ChebyshevT[n, I] + 3 (n - 2) n + RootSum[-1 + # + #^3 &, #^n &] + RootSum[1 + # + #^3 &, #^n &], {n, 2, 20}]
Showing 1-2 of 2 results.
Comments