A362635 Number of partitions of [n] whose blocks are ordered with increasing least elements and where block i has size at least i.
1, 1, 1, 2, 5, 12, 31, 97, 351, 1318, 4963, 19391, 82531, 386704, 1926907, 9811733, 50252175, 261462430, 1415025895, 8118274255, 49355434511, 312266428040, 2012834117143, 13055850467371, 85215848844559, 565353777291346, 3866868949795579, 27548261709035105
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(2) = 1: 12. a(3) = 2: 123, 1|23. a(4) = 5: 1234, 12|34, 13|24, 14|23, 1|234. a(5) = 12: 12345, 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345. a(6) = 31: 123456, 1234|56, 1235|46, 1236|45, 123|456, 1245|36, 1246|35, 124|356, 1256|34, 125|346, 126|345, 12|3456, 1345|26, 1346|25, 134|256, 1356|24, 135|246, 136|245, 13|2456, 1456|23, 145|236, 146|235, 14|2356, 156|234, 15|2346, 16|2345, 1|23456, 1|23|456, 1|24|356, 1|25|346, 1|26|345.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add( b(n-j, t+1)*binomial(n-1, j-1), j=t..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..30);