A362549 Number of partitions of [n] whose blocks can be ordered such that the i-th block (except possibly the last) has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
1, 1, 2, 4, 9, 23, 64, 187, 566, 1777, 5820, 19944, 71343, 264719, 1011292, 3953381, 15756609, 63945484, 264384828, 1115246518, 4806957739, 21189601861, 95516470253, 439777682222, 2064164172616, 9853934668051, 47736608806520, 234235866539512, 1162618720397931
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(2) = 2: 12, 1|2. a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 9: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234, 1|23|4. a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45. a(6) = 64: 123456, 12345|6, 12346|5, 1234|56, 12356|4, ..., 1|2356|4, 1|235|46, 16|23|45, 1|236|45, 1|23|456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..888
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n<=t, 1, add(b(j, t+1)*binomial(n-t, j), j=0..n-t)) end: a:= n-> b(n, 1): seq(a(n), n=0..30);