A362558 Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2.
1, 1, 1, 3, 2, 7, 6, 15, 11, 30, 27, 56, 44, 101, 93, 176, 149, 297, 271, 490, 432, 792, 744, 1255, 1109, 1958, 1849, 3010, 2764, 4565, 4287, 6842, 6328, 10143, 9673, 14883, 13853, 21637, 20717, 31185, 29343, 44583, 42609, 63261, 60100, 89134, 85893, 124754
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 15 partitions: (1) (2) (3) (4) (5) (6) (7) (21) (31) (32) (42) (43) (111) (41) (51) (52) (221) (222) (61) (311) (411) (322) (2111) (2211) (331) (11111) (421) (511) (2221) (3211) (4111) (22111) (31111) (211111) (1111111) The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(8).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],!MemberQ[Accumulate[#],n/2]&]],{n,0,15}]
Comments