A362559
Number of integer partitions of n whose weighted sum is divisible by n.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 7, 8, 11, 14, 14, 18, 25, 28, 26, 42, 47, 52, 73, 77, 100, 118, 122, 158, 188, 219, 266, 313, 367, 412, 489, 578, 698, 809, 914, 1094, 1268, 1472, 1677, 1948, 2305, 2656, 3072, 3527, 4081, 4665, 5342, 6225, 7119, 8150, 9408
Offset: 1
The weighted sum of y = (4,2,2,1) is 1*4+2*2+3*2+4*1 = 18, which is a multiple of 9, so y is counted under a(9).
The a(1) = 1 through a(9) = 5 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(111) (11111) (222) (3211) (3311) (333)
(3111) (1111111) (221111) (4221)
(222111)
(111111111)
For median instead of mean we have
A362558.
The complement is counted by
A362560.
A264034 counts partitions by weighted sum.
A318283 = weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A001227,
A051293,
A067538,
A067539,
A240219,
A261079,
A322439,
A326622,
A359893,
A360068,
A360069,
A362051.
-
Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
Original entry on oeis.org
0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
For median instead of mean we have
A322439 aerated, complement
A362558.
The complement is counted by
A362559.
A264034 counts partitions by weighted sum.
A318283 = weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A001227,
A051293,
A067538,
A240219,
A261079,
A326622,
A349156,
A360068,
A360069,
A360241,
A362051.
-
Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
A362051
Number of integer partitions of 2n without a nonempty initial consecutive subsequence summing to n.
Original entry on oeis.org
1, 1, 2, 6, 11, 27, 44, 93, 149, 271, 432, 744, 1109, 1849, 2764, 4287, 6328, 9673, 13853, 20717, 29343, 42609, 60100, 85893, 118475, 167453, 230080, 318654, 433763, 595921, 800878, 1090189, 1456095, 1957032, 2600199, 3465459, 4558785, 6041381, 7908681
Offset: 0
The a(1) = 1 through a(4) = 11 partitions:
(2) (4) (6) (8)
(31) (42) (53)
(51) (62)
(222) (71)
(411) (332)
(2211) (521)
(611)
(3221)
(3311)
(5111)
(32111)
The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(4).
The complement is counted by
A322439.
A304442 counts partitions with all equal run-sums.
A353836 counts partitions by number of distinct run-sums.
Cf.
A108917,
A169942,
A237363,
A325676,
A353864,
A360254,
A360672,
A360675,
A360686,
A360952,
A362560.
-
Table[Length[Select[IntegerPartitions[2n],!MemberQ[Accumulate[#],n]&]],{n,0,15}]
A363525
Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1
The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
1 2 4 6 9 C E
11 22 33 333 66 77
1111 222 711 444 65111
111111 6111 921 73211
111111111 3333 2222222
7311 71111111
63111 11111111111111
222222
621111
111111111111
The case of equality (and reciprocal version) is
A000005.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A358137,
A359755,
A362558,
A362559,
A362560,
A363527.
-
Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]
A363528
Number of strict integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 2, 3, 9, 3, 4, 11, 4, 5, 16, 6, 8, 24, 8, 10, 31, 11, 14, 41, 18, 18, 59, 21, 27, 74, 30, 32, 100, 35, 43, 128, 54, 53, 173, 58, 78, 215, 81, 88, 294, 97, 123, 362, 150, 146, 469, 162, 221, 577
Offset: 1
The a(n) partitions for n = 1, 12, 15, 21, 24, 26:
(1) (12) (15) (21) (24) (26)
(9,2,1) (11,3,1) (15,5,1) (17,6,1) (11,8,4,2,1)
(9,3,2,1) (16,3,2) (18,4,2) (12,6,5,2,1)
(11,7,2,1) (12,9,2,1) (13,5,4,3,1)
(12,5,3,1) (13,7,3,1)
(10,5,3,2,1) (14,5,4,1)
(15,4,3,2)
(10,8,3,2,1)
(11,6,4,2,1)
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A008284,
A053632,
A067538,
A222855,
A222970,
A358137,
A359754,
A359755,
A362558,
A362559,
A362560.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Total[Accumulate[#]],Total[Accumulate[Reverse[#]]]]&]],{n,30}]
Showing 1-5 of 5 results.
Comments