A362566 a(n) is the area of the smallest rectangle that the Harter-Heighway Dragon Curve will fit in after n doublings, starting with a segment of length 1.
0, 1, 2, 6, 15, 42, 77, 180, 345, 806, 1457, 3276, 5985, 13462, 24257, 54060, 97665, 217686, 391937, 871596, 1570305, 3492182, 6286337, 13972140, 25155585, 55911766, 100642817, 223660716, 402612225, 894735702, 1610530817, 3578997420, 6442287105, 14316361046
Offset: 0
Examples
See link: a(3) = 2*3 = 6; a(4) = 3*5 = 15; a(5) = 6*7 = 42.
Links
- Nicolay Avilov, Illustration of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,8,-8,-12,12,-16,16)
Programs
-
Python
x1, x2, y1, y2, ex, ey, a = 0, 1, 0, 0, 1, 0, [0] for n in range(40): ex, ey = ex-ey, ey+ex x1r, x2r, y1r, y2r = y1+ex, y2+ex, -x2+ey, -x1+ey x1, x2, y1, y2 = min(x1, x1r), max(x2, x2r), min(y1, y1r), max(y2, y2r) a.append((x2-x1)*(y2-y1)) print(a) # Andrey Zabolotskiy, May 03 2023
Formula
G.f.: x * (1 + x + x^2 + 6*x^3 + 7*x^4 + 2*x^6) / ((1 - x) * (1 - 2*x) * (1 + 2*x) * (1 + x^2) * (1 - 2*x^2) * (1 + 2*x^2)).
a(n) =
(3*2^n - 5*2^(n/2) + 2) / 2 for n == 0 (mod 2),
(5*2^n - 9*2^((n-1)/2) + 2) / 3 for n == 1 (mod 4),
(5*2^n - 13*2^((n-1)/2) + 4) / 3 for n == 3 (mod 4). (End)
Extensions
Terms a(16) and beyond and a(0)=0 from Andrey Zabolotskiy, Apr 27 2023
Comments