cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362577 Number of vertex cuts in the n-trapezohedral graph.

Original entry on oeis.org

5, 15, 88, 435, 1957, 8394, 35273, 146795, 607492, 2503687, 10282873, 42103670, 171925709, 700339023, 2846710048, 11549292123, 46778169517, 189188288130, 764162167025, 3083079787091, 12426568931356, 50042249662927, 201366368701441, 809732016511598, 3254128933657397
Offset: 1

Views

Author

Eric W. Weisstein, Apr 25 2023

Keywords

Comments

The n-trapezohedral graph is defined for n >= 3. The sequence has been extended to n=1 using the formula/recurrence. - Andrew Howroyd, May 03 2023

Crossrefs

Programs

  • Mathematica
    Table[LucasL[2 n] - ((3 - Sqrt[17])^n + (3 + Sqrt[17])^n)/2^(n - 1) + 2 n - 4 n^2 + 3 4^n - 2, {n, 20}] //Expand
    LinearRecurrence[{13, -65, 156, -179, 69, 37, -38, 8}, {5, 15, 88, 435, 1957, 8394, 35273, 146795}, 20]
    CoefficientList[Series[(-5 + 50 x - 218 x^2 + 514 x^3 - 577 x^4 + 160 x^5 - 28 x^6 + 8 x^7)/((-1 + x)^3 (-1 + 4 x) (1 - 3 x + x^2) (-1 + 3 x + 2 x^2)), {x, 0, 20}], x]
  • PARI
    Vec((5 - 50*x + 218*x^2 - 514*x^3 + 577*x^4 - 160*x^5 + 28*x^6 - 8*x^7)/((1 - x)^3*(1 - 4*x)*(1 - 3*x + x^2)*(1 - 3*x - 2*x^2)) + O(x^30)) \\ Andrew Howroyd, May 03 2023

Formula

From Andrew Howroyd, May 03 2023: (Start)
a(n) = 3*4^n - 4*n^2 + 2*n - 2 + A005248(n) - 2*A206776(n).
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 179*a(n-4) + 69*a(n-5) + 37*a(n-6) - 38*a(n-7) + 8*a(n-8) for n > 8.
G.f.: x*(5 - 50*x + 218*x^2 - 514*x^3 + 577*x^4 - 160*x^5 + 28*x^6 - 8*x^7)/((1 - x)^3*(1 - 4*x)*(1 - 3*x + x^2)*(1 - 3*x - 2*x^2)).
(End)

Extensions

a(1)-a(2) prepended and a(15) and beyond from Andrew Howroyd, May 03 2023