A362579 Numbers k such that the decimal expansion of 1/k does not contain the digit 5.
1, 3, 5, 6, 9, 10, 11, 12, 13, 15, 21, 24, 25, 27, 30, 33, 36, 37, 41, 44, 45, 48, 50, 52, 55, 60, 72, 73, 75, 77, 84, 88, 90, 91, 96, 99, 100, 101, 110, 111, 120, 123, 125, 130, 135, 137, 143, 144, 150, 159, 165, 205, 208, 210, 216, 225, 231, 237, 239, 240, 250, 259, 264, 270, 271, 273, 275, 288
Offset: 1
Examples
a(8) = 12 is a term because 1/12 = 0.08333... does not contain the digit 5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2692 (n = 1..1000 from Robert Israel)
Crossrefs
Complement of A353441.
Programs
-
Maple
filter:= proc(n) local q; q:= NumberTheory:-RepeatingDecimal(1/n); not(member(5,RepeatingPart(q)) or member(5, NonRepeatingPart(q))) end proc: select(filter, [$1..300]);
-
Mathematica
Select[Range[500], FreeQ[First[RealDigits[1/#]], 5] &] (* Paolo Xausa, Apr 23 2024 *)
-
Python
from itertools import count, islice from sympy import multiplicity, n_order def A362579_gen(startvalue=1): # generator of terms >= startvalue for a in count(max(startvalue,1)): m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a) k, m = 10**max(m2,m5), 10**n_order(10,a//(1<
A362579_list = list(islice(A362579_gen(),20)) # Chai Wah Wu, May 01 2023
Comments