A362596 Number of parking functions of size n avoiding the patterns 213 and 321.
1, 1, 3, 13, 60, 275, 1238, 5480, 23922, 103267, 441798, 1876366, 7921488, 33275758, 139194812, 580180598, 2410827422, 9990993443, 41308185542, 170439003998, 701953309592, 2886284314298, 11850433719572, 48591008205608, 199002198798980, 814117064956430
Offset: 0
Examples
For n=3 the a(3)=13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
Links
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
Programs
-
PARI
a(n)=if(n==0, 1, (n^2 - 3*n + 4)*binomial(2*n,n)/(4*(n+1)) + 4^n/8) \\ Andrew Howroyd, Apr 27 2023
-
Python
from math import comb def A362596(n): return ((n*(n-3)+4)*comb(n<<1,n)//(n+1)>>2)+(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023
Formula
For n>=1, a(n) = (n^2 - 3*n + 4)/4*A000108(n) + 4^(n - 1)/2.
G.f.: 1+((9*x^2 - 10*x + 2)*sqrt(1 - 4*x) - 23*x^2 + 14*x - 2)/(2*(1 - 4*x)^(3/2)*x).
D-finite with recurrence 2*(n+1)*a(n) +2*(-15*n+1)*a(n-1) +(167*n-193)*a(n-2) +2*(-204*n+467)*a(n-3) +184*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 11 2024