A362610 Number of integer partitions of n having a unique part of least multiplicity.
0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0
Keywords
Examples
The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15). The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (2111) (411) (511) (422) (11111) (3111) (2221) (611) (21111) (4111) (2222) (111111) (22111) (5111) (31111) (22211) (211111) (41111) (1111111) (221111) (311111) (2111111) (11111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
-
PARI
seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023
Formula
G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023
Comments