A362614 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 11, 3, 1, 0, 16, 4, 2, 0, 21, 6, 3, 0, 29, 8, 4, 1, 0, 43, 7, 5, 1, 0, 54, 13, 8, 2, 0, 78, 12, 8, 3, 0, 102, 17, 11, 5, 0, 131, 26, 12, 6, 1, 0, 175, 29, 17, 9, 1, 0, 233, 33, 18, 11, 2, 0, 295, 47, 25
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 0 2 1 0 4 1 0 5 2 0 7 3 1 0 11 3 1 0 16 4 2 0 21 6 3 0 29 8 4 1 0 43 7 5 1 0 54 13 8 2 0 78 12 8 3 0 102 17 11 5 0 131 26 12 6 1 0 175 29 17 9 1 Row n = 8 counts the following partitions: (8) (53) (431) (44) (62) (521) (332) (71) (422) (3311) (611) (2222) (3221) (4211) (5111) (22211) (32111) (41111) (221111) (311111) (2111111) (11111111)
Links
- Alois P. Heinz, Rows n = 0..800, flattened
Crossrefs
Programs
-
Mathematica
msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
Comments