A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 10, 4, 1, 0, 13, 7, 2, 0, 16, 11, 3, 0, 23, 14, 4, 1, 0, 30, 19, 6, 1, 0, 35, 29, 11, 2, 0, 50, 34, 14, 3, 0, 61, 46, 23, 5, 0, 73, 69, 27, 6, 1, 0, 95, 81, 44, 10, 1, 0, 123, 105, 53, 14, 2
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 0 2 1 0 4 1 0 5 2 0 7 3 1 0 10 4 1 0 13 7 2 0 16 11 3 0 23 14 4 1 0 30 19 6 1 0 35 29 11 2 0 50 34 14 3 0 61 46 23 5 0 73 69 27 6 1 0 95 81 44 10 1 Row n = 8 counts the following partitions: (8) (53) (431) (44) (62) (521) (332) (71) (422) (3221) (611) (3311) (2222) (4211) (5111) (32111) (22211) (41111) (221111) (311111) (2111111) (11111111)
Links
- Alois P. Heinz, Rows n = 0..800, flattened
Crossrefs
Programs
-
Mathematica
comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
Comments