cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362625 a(n) = Sum_{k not divides n - k, 0 <= k < n} k.

Original entry on oeis.org

0, 0, 1, 1, 6, 3, 15, 11, 22, 23, 45, 22, 66, 59, 69, 71, 120, 84, 153, 112, 158, 179, 231, 144, 256, 263, 283, 266, 378, 267, 435, 367, 444, 479, 503, 397, 630, 611, 641, 550, 780, 621, 861, 766, 798, 923, 1035, 772, 1086, 1018, 1143, 1112, 1326, 1119, 1337, 1212, 1448
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 28 2023

Keywords

Comments

a(n) is the total distance from n to each of its nondivisors. For example, a(6)=3 since the nondivisors of 6 are 4,5 and (6-4)+(6-5) = 2+1 = 3.

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A024816 (antisigma), A049820 (n-d(n)), A094471, A161680.

Programs

  • Maple
    divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0):
    A362625 := n -> local k; add(`if`(divides(n - k, n), 0, k), k = 0..n - 1):
    seq(A362625(n), n = 1..57);  # Peter Luschny, Nov 14 2023
  • Mathematica
    Table[n (n - 1)/2 - n*DivisorSigma[0, n] + DivisorSigma[1, n], {n, 100}]
    (* Alternative: *)
    a[n_] := Sum[If[Divisible[n, n - k], 0, k], {k, 0, n - 1}]
    Table[a[n], {n, 1, 57}]  (* Peter Luschny, Nov 14 2023 *)
  • PARI
    a(n) = n*(n-1)/2 - n*numdiv(n) + sigma(n); \\ Michel Marcus, Apr 28 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A362625(n):
        f = factorint(n)
        return (n*(n-1)>>1)-n*prod(e+1 for e in f.values())+prod((p**(e+1)-1)//(p-1) for p, e in f.items()) # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def A362625(n): return sum(k for k in (0..n-1) if not (n-k).divides(n))
    print([A362625(n) for n in srange(1, 58)])  # Peter Luschny, Nov 14 2023

Formula

a(n) = n*(n-1)/2 - n*tau(n) + sigma(n). [Previous name.]
a(n) = n*(n - tau(n)) - antisigma(n).
a(n) = Sum_{k=1..n} (n - k) * (ceiling(n/k) - floor(n/k)).
a(n) = A161680(n) - A094471(n).
a(p) = (p-1)*(p-2)/2, for primes p.

Extensions

Simpler name by Peter Luschny, Nov 14 2023