A362625 a(n) = Sum_{k not divides n - k, 0 <= k < n} k.
0, 0, 1, 1, 6, 3, 15, 11, 22, 23, 45, 22, 66, 59, 69, 71, 120, 84, 153, 112, 158, 179, 231, 144, 256, 263, 283, 266, 378, 267, 435, 367, 444, 479, 503, 397, 630, 611, 641, 550, 780, 621, 861, 766, 798, 923, 1035, 772, 1086, 1018, 1143, 1112, 1326, 1119, 1337, 1212, 1448
Offset: 1
Crossrefs
Programs
-
Maple
divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0): A362625 := n -> local k; add(`if`(divides(n - k, n), 0, k), k = 0..n - 1): seq(A362625(n), n = 1..57); # Peter Luschny, Nov 14 2023
-
Mathematica
Table[n (n - 1)/2 - n*DivisorSigma[0, n] + DivisorSigma[1, n], {n, 100}] (* Alternative: *) a[n_] := Sum[If[Divisible[n, n - k], 0, k], {k, 0, n - 1}] Table[a[n], {n, 1, 57}] (* Peter Luschny, Nov 14 2023 *)
-
PARI
a(n) = n*(n-1)/2 - n*numdiv(n) + sigma(n); \\ Michel Marcus, Apr 28 2023
-
Python
from math import prod from sympy import factorint def A362625(n): f = factorint(n) return (n*(n-1)>>1)-n*prod(e+1 for e in f.values())+prod((p**(e+1)-1)//(p-1) for p, e in f.items()) # Chai Wah Wu, Apr 28 2023
-
SageMath
def A362625(n): return sum(k for k in (0..n-1) if not (n-k).divides(n)) print([A362625(n) for n in srange(1, 58)]) # Peter Luschny, Nov 14 2023
Formula
Extensions
Simpler name by Peter Luschny, Nov 14 2023
Comments