cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A362644 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of permutations of an n-set with k permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 8, 5, 1, 1, 1, 5, 17, 28, 7, 1, 1, 1, 6, 34, 159, 96, 11, 1, 1, 1, 7, 61, 888, 2655, 495, 15, 1, 1, 1, 8, 105, 4521, 76854, 88885, 2919, 22, 1, 1, 1, 9, 170, 20916, 1882581, 15719714, 4255594, 22024, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the multiset.

Examples

			Array begins:
====================================================================
n/k| 0  1    2       3          4             5                6 ...
---+----------------------------------------------------------------
0  | 1  1    1       1          1             1                1 ...
1  | 1  1    1       1          1             1                1 ...
2  | 1  2    3       4          5             6                7 ...
3  | 1  3    8      17         34            61              105 ...
4  | 1  5   28     159        888          4521            20916 ...
5  | 1  7   96    2655      76854       1882581         39122096 ...
6  | 1 11  495   88885   15719714    2271328951     274390124129 ...
7  | 1 15 2919 4255594 5341866647 5387750530872 4530149870111873 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A000041, A362645, A362646.
Rows n=3 is A002626.
Main diagonal is A362647.
Cf. A362648.

Programs

  • PARI
    B(n,k) = {n!*k^n}
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}

Formula

T(0,k) = T(1,k) = 1.

A362646 Number of nonisomorphic unordered triples of permutations of an n-set.

Original entry on oeis.org

1, 1, 4, 17, 159, 2655, 88885, 4255594, 271455237, 21965858675, 2195840991306, 265649187979346, 38249422682143111, 6463715133421876832, 1266831272565696798499, 285028258254526750598805, 72965650731146278648727481, 21086743012582576506980525584
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Crossrefs

Column k=3 of A362644.

A362649 Number of nonisomorphic unordered pairs of involutions on an n-set.

Original entry on oeis.org

1, 1, 3, 4, 10, 13, 27, 36, 69, 92, 162, 217, 365, 487, 782, 1043, 1622, 2154, 3253, 4306, 6355, 8376, 12107, 15893, 22582, 29512, 41285, 53729, 74164, 96100, 131054, 169110, 228165, 293202, 391752, 501406, 664093, 846642, 1112363, 1412768, 1842620
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			The a(4)=10 pairs of involutions are:
  {(), ()},
  {(), (34)},
  {(), (12)(34)},
  {(34), (34)},
  {(34), (23)},
  {(34), (12)},
  {(34), (12)(34)},
  {(34), (13)(24)},
  {(12)(34), (12)(34)},
  {(12)(34), (13)(24)}.
		

Crossrefs

Column k=2 of A362648.

A362760 Number of nonisomorphic unordered pairs of derangements of an n-set.

Original entry on oeis.org

1, 0, 1, 2, 7, 16, 84, 403, 3028, 25431, 250377, 2726361, 32622807, 423310642, 5921052187, 88759485250, 1419511438134, 24123164524402, 434094104795638, 8245872981392311, 164885609163058430, 3462034812141768953, 76154237902292661820, 1751339843001023621169
Offset: 0

Views

Author

Andrew Howroyd, May 02 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			The a(3)=2 nonisomorphic pairs of derangements with permutations shown in cycle notation are:
  {(123), (123)},
  {(123), (132)}.
The a(4)=7 nonisomorphic pairs of derangements are:
  {(12)(34), (12)(34)},
  {(12)(34), (13)(24)},
  {(12)(34), (1234)},
  {(12)(34), (1324)},
  {(1234), (1234)},
  {(1234), (1243)},
  {(1234), (1432)}.
		

Crossrefs

Column k=2 of A362759.
Cf. A000166 (derangements), A362645.

A362764 Number of nonisomorphic 2-sets of permutations of an n-set.

Original entry on oeis.org

0, 1, 5, 23, 89, 484, 2904, 22002, 190555, 1876337, 20445337, 244087420, 3161870208, 44155439706, 661065427533, 10561205778825, 179324080364960, 3224650449785185, 61218223893368714, 1223523447160283853, 25679025453032962132, 564657001202726477313
Offset: 1

Views

Author

Andrew Howroyd, May 03 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			The a(3)=5 sets with permutations shown in cycle notation are:
  {(1)(2)(3), (1)(23)},
  {(1)(2)(3), (123)},
  {(1)(23), (12)(3)},
  {(1)(23), (123)},
  {(123), (132)}.
		

Crossrefs

Column k=2 of A362763.

Formula

a(n) = A362645(n) - A000041(n).
Showing 1-5 of 5 results.