cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362648 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of involutions on an n-set with k involutions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 10, 3, 1, 1, 1, 6, 11, 29, 13, 4, 1, 1, 1, 7, 16, 74, 63, 27, 4, 1, 1, 1, 8, 23, 173, 315, 258, 36, 5, 1, 1, 1, 9, 31, 383, 1532, 3039, 759, 69, 5, 1, 1, 1, 10, 41, 790, 7093, 38800, 28550, 3263, 92, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			Array begins:
============================================================
n/k| 0 1  2    3      4        5          6            7 ...
---+--------------------------------------------------------
0  | 1 1  1    1      1        1          1            1 ...
1  | 1 1  1    1      1        1          1            1 ...
2  | 1 2  3    4      5        6          7            8 ...
3  | 1 2  4    7     11       16         23           31 ...
4  | 1 3 10   29     74      173        383          790 ...
5  | 1 3 13   63    315     1532       7093        30499 ...
6  | 1 4 27  258   3039    38800     478902      5414462 ...
7  | 1 4 36  759  28550  1203468   46259693   1561933881 ...
8  | 1 5 69 3263 392641 55494682 7010194951 768995611810 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A004526, A362649, A362650.
Main diagonal is A362651.
Cf. A000085 (involutions), A362644, A362759.

Programs

  • PARI
    B(c,k)=sum(j=0, c\2, if(k%2, 1, 2^(c-2*j))*k^j*binomial(c, 2*j)*(2*j)!/(2^j*j!))
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}