A362677 Primes whose reversal + 1 is a cube.
7, 421, 827, 4733, 32831, 57571, 228301, 364751, 892079, 1932677, 2256713, 3684211, 4213591, 6751853, 7218259, 7887707, 8497033, 15720487, 19925251, 21055813, 28756943, 29547961, 47369149, 51881849, 55033973, 57954643, 59677001, 63062963, 74415157, 88535987
Offset: 1
Examples
421 is prime and reversal(421) + 1 = 124 + 1 = 125 = 5^3. 364751 is in the sequence because it is prime and reversal(364751) + 1 = 157463 + 1 = 157464 = 54^3.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@Range@1000000,IntegerQ@CubeRoot@(FromDigits@Reverse@IntegerDigits@#+1) &] r = Select[Range@300, Mod[#, 3] != 1 && Mod[#, 10] != 1 &]; s = Sort@Select[FromDigits /@ Reverse /@ IntegerDigits@(r^3 - 1),PrimeQ] Select[Prime[Range[514*10^4]],IntegerQ[CubeRoot[1+IntegerReverse[#]]]&] (* Harvey P. Dale, Apr 03 2025 *)
-
Python
from sympy import isprime s=[int(str(k**3-1)[::-1]) for k in range(1,301)if k%10!=1 and k%3!=1] t=[p for p in s if isprime(p)] t.sort print(t)
Extensions
a(18)-a(30) from Jon E. Schoenfield, Jul 03 2023
Comments