A362724 a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
1, 3, 37, 525, 7925, 123878, 1980199, 32150030, 527984245, 8747075100, 145917510662, 2447835093498, 41253740275559, 697956867712705, 11847510103853090, 201678623730755525, 3441648250114203253, 58859380176953941937, 1008553120517397082420, 17311102730697482426850
Offset: 0
Links
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Programs
Formula
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and positive integers n and r.
Comments