A362732 a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A006480(k)*x^k/k ).
1, 6, 162, 5082, 170274, 5920506, 210808494, 7631158674, 279617726754, 10341283241130, 385275082939662, 14439312879759378, 543815325940475694, 20565700004741265900, 780470358196543271622, 29708379800729905316832, 1133811403010621704628514, 43371319655978568356324868
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..620
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Maple
E(n,x) := series(exp(n*add(((3*k)!/k!^3*x^k)/k, k = 1..20)), x, 21): seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
-
Mathematica
nmax = 20; Table[SeriesCoefficient[E^(n*Sum[(3*k)!/k!^3*x^k/k, {k, 1, n}]), {x, 0, n}], {n, 0, nmax}] (* Vaclav Kotesovec, Nov 26 2024 *)
-
Python
from sympy import symbols, factorial, exp, series x = symbols('x') nmax = 10 result = [] for n in range(0, nmax + 1): summation = sum(factorial(3 * k) / (factorial(k)**3 * k) * x**k for k in range(1, n + 1)) exp_series = exp(n * summation) coefficient = exp_series.series(x, 0, n + 1).coeff(x, n) result.append(coefficient) print(result) # Robert C. Lyons, Jan 27 2025
Formula
a(n*p^r) == a(n*p^(r-1)) (mod p^r) (Gauss congruence) holds for all primes p and positive integers n and r.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 3 and positive integers n and r.
a(n) ~ c * d^n / sqrt(n), where d = 39.5963012687026... and c = 0.107979249748...
Comments