cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A362648 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of involutions on an n-set with k involutions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 10, 3, 1, 1, 1, 6, 11, 29, 13, 4, 1, 1, 1, 7, 16, 74, 63, 27, 4, 1, 1, 1, 8, 23, 173, 315, 258, 36, 5, 1, 1, 1, 9, 31, 383, 1532, 3039, 759, 69, 5, 1, 1, 1, 10, 41, 790, 7093, 38800, 28550, 3263, 92, 6, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			Array begins:
============================================================
n/k| 0 1  2    3      4        5          6            7 ...
---+--------------------------------------------------------
0  | 1 1  1    1      1        1          1            1 ...
1  | 1 1  1    1      1        1          1            1 ...
2  | 1 2  3    4      5        6          7            8 ...
3  | 1 2  4    7     11       16         23           31 ...
4  | 1 3 10   29     74      173        383          790 ...
5  | 1 3 13   63    315     1532       7093        30499 ...
6  | 1 4 27  258   3039    38800     478902      5414462 ...
7  | 1 4 36  759  28550  1203468   46259693   1561933881 ...
8  | 1 5 69 3263 392641 55494682 7010194951 768995611810 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A004526, A362649, A362650.
Main diagonal is A362651.
Cf. A000085 (involutions), A362644, A362759.

Programs

  • PARI
    B(c,k)=sum(j=0, c\2, if(k%2, 1, 2^(c-2*j))*k^j*binomial(c, 2*j)*(2*j)!/(2^j*j!))
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}

A362899 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with k endofunctions.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 6, 1, 1, 0, 1, 22, 162, 13, 1, 1, 0, 1, 63, 3935, 4527, 40, 1, 1, 0, 1, 136, 81015, 1497568, 172335, 100, 1, 1, 0, 1, 302, 1369101, 384069023, 883538845, 7861940, 291, 1, 1, 0, 1, 580, 19601383, 78954264778, 3450709120355, 725601878962, 416446379, 797, 1
Offset: 0

Views

Author

Andrew Howroyd, May 10 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. Each endofunction can be considered to be a loopless digraph where each node has out-degree 1.

Examples

			Array begins:
==============================================================
n/k| 0  1      2         3             4                 5 ...
---+----------------------------------------------------------
0  | 1  1      1         1             1                 1 ...
1  | 1  0      0         0             0                 0 ...
2  | 1  1      1         1             1                 1 ...
3  | 1  2      9        22            63               136 ...
4  | 1  6    162      3935         81015           1369101 ...
5  | 1 13   4527   1497568     384069023       78954264778 ...
6  | 1 40 172335 883538845 3450709120355 10786100835304758 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A001373, A362900, A362901.
Main diagonal is A362902.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); (sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t)) - 1)^g)}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}

A362760 Number of nonisomorphic unordered pairs of derangements of an n-set.

Original entry on oeis.org

1, 0, 1, 2, 7, 16, 84, 403, 3028, 25431, 250377, 2726361, 32622807, 423310642, 5921052187, 88759485250, 1419511438134, 24123164524402, 434094104795638, 8245872981392311, 164885609163058430, 3462034812141768953, 76154237902292661820, 1751339843001023621169
Offset: 0

Views

Author

Andrew Howroyd, May 02 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			The a(3)=2 nonisomorphic pairs of derangements with permutations shown in cycle notation are:
  {(123), (123)},
  {(123), (132)}.
The a(4)=7 nonisomorphic pairs of derangements are:
  {(12)(34), (12)(34)},
  {(12)(34), (13)(24)},
  {(12)(34), (1234)},
  {(12)(34), (1324)},
  {(1234), (1234)},
  {(1234), (1243)},
  {(1234), (1432)}.
		

Crossrefs

Column k=2 of A362759.
Cf. A000166 (derangements), A362645.

A362761 Number of nonisomorphic unordered triples of derangements of an n-set.

Original entry on oeis.org

1, 0, 1, 2, 18, 138, 4642, 211600, 13511246, 1092862024, 109276859229, 13221974420985, 1903936637405380, 321762396855180477, 63065061524052355523, 14189582409276961769144, 3632522968870016652531332, 1049797035002712952582167891, 340133739324533632977813192678
Offset: 0

Views

Author

Andrew Howroyd, May 02 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Examples

			The a(3) = 2 nonisomorphic triples of derangements are:
  {(123), (123), (123)},
  {(123), (123), (132)}.
		

Crossrefs

Column k=3 of A362759.

A362762 Number of nonisomorphic multisets of derangements of an n-set with n derangements.

Original entry on oeis.org

1, 0, 1, 2, 43, 14337, 706921410, 2997923196044931, 1444144328636895497029515, 102283439767915808465814602082093471, 1365131086334878921752089363480972733171373474663, 4296984259821021241778301305720225516826609689764873566360067437
Offset: 0

Views

Author

Andrew Howroyd, May 03 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Crossrefs

Main diagonal of A362759.
Cf. A362647.
Showing 1-5 of 5 results.