cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362763 Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-sets of permutations of an n-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 3, 1, 0, 0, 0, 5, 5, 1, 0, 0, 0, 6, 23, 7, 1, 0, 0, 0, 5, 116, 89, 11, 1, 0, 0, 0, 3, 521, 2494, 484, 15, 1, 0, 0, 0, 1, 1931, 69366, 87984, 2904, 22, 1, 0, 0, 0, 0, 5906, 1592714, 15456557, 4250015, 22002, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 03 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the k-set.

Examples

			Array begins:
====================================================================
n/k| 0  1    2       3          4             5                6 ...
---+----------------------------------------------------------------
0  | 1  1    0       0          0             0                0 ...
1  | 1  1    0       0          0             0                0 ...
2  | 1  2    1       0          0             0                0 ...
3  | 1  3    5       6          5             3                1 ...
4  | 1  5   23     116        521          1931             5906 ...
5  | 1  7   89    2494      69366       1592714         30461471 ...
6  | 1 11  484   87984   15456557    2209040882     263190866673 ...
7  | 1 15 2904 4250015 5329123475 5366409944453 4503264576070573 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A000041, A362764, A362765.
Row sums are A362766.
Cf. A362644.

Programs

  • PARI
    B(n,k) = {n!*k^n}
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, k<=1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*(x^m-x^(2*m))/m, O(x*x^k))), k)); s/n!)}

Formula

T(n,k) = 0 for k > n!.
T(n,k) = T(n, n!-k).
Showing 1-1 of 1 results.