cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362790 a(n) = Sum_{k=0..n} FallingFactorial(n - k, k) * Stirling2(n - k, k), row sums of A362789.

Original entry on oeis.org

1, 0, 1, 2, 5, 22, 95, 450, 2461, 14654, 93851, 647746, 4781801, 37488462, 310842127, 2716308194, 24929090357, 239556785086, 2404139609987, 25139451248418, 273330944247265, 3084182865509966, 36055337388402935, 436016786153035522, 5446585683469420205
Offset: 0

Views

Author

Peter Luschny, May 04 2023

Keywords

Crossrefs

Cf. A362789.

Programs

  • Maple
    a := n -> add((-1)^k*pochhammer(k - n, k)*Stirling2(n - k, k), k = 0..iquo(n,2)):
    seq(a(n), n = 0..24);
  • SageMath
    def A362790(n):
        return sum(falling_factorial(n - k, k) * stirling_number2(n - k, k) for k in range(n//2 + 1))
    print([A362790(n) for n in range(12)])

A362788 Triangle read by rows, T(n, k) = RisingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 6, 0, 4, 36, 0, 5, 140, 60, 0, 6, 450, 720, 0, 7, 1302, 5250, 840, 0, 8, 3528, 30240, 16800, 0, 9, 9144, 151704, 196560, 15120, 0, 10, 22950, 695520, 1764000, 453600, 0, 11, 56210, 2994750, 13471920, 7761600, 332640
Offset: 0

Views

Author

Peter Luschny, May 04 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 2;
[4] 0, 3,    6;
[5] 0, 4,   36;
[6] 0, 5,  140,    60;
[7] 0, 6,  450,   720;
[8] 0, 7, 1302,  5250,   840;
[9] 0, 8, 3528, 30240, 16800;
		

Crossrefs

Cf. A052512 (row sums), A362369, A362789.

Programs

  • Maple
    T := (n, k) -> pochhammer(n - k, k) * Stirling2(n - k, k):
    seq(seq(T(n, k), k = 0..iquo(n,2)), n = 0..12);
  • SageMath
    def A362788(n, k):
        return rising_factorial(n - k, k) * stirling_number2(n - k, k)
    for n in range(10):
        print([A362788(n, k) for k in range(n//2 + 1)])

A362369 Triangle read by rows, T(n, k) = binomial(n, k) * k! * Stirling2(n-k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.

Original entry on oeis.org

1, 0, 0, 2, 0, 3, 0, 4, 12, 0, 5, 60, 0, 6, 210, 120, 0, 7, 630, 1260, 0, 8, 1736, 8400, 1680, 0, 9, 4536, 45360, 30240, 0, 10, 11430, 216720, 327600, 30240, 0, 11, 28050, 956340, 2772000, 831600, 0, 12, 67452, 3993000, 20207880, 13305600, 665280
Offset: 0

Views

Author

Peter Luschny, May 04 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 2;
[3] 0, 3;
[4] 0, 4,   12;
[5] 0, 5,   60;
[6] 0, 6,  210,   120;
[7] 0, 7,  630,  1260;
[8] 0, 8, 1736,  8400,  1680;
[9] 0, 9, 4536, 45360, 30240;
		

Crossrefs

Cf. A000169, A052506 (row sums), A362788, A362789.

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * k! * Stirling2(n-k, k):
    seq(seq(T(n, k), k = 0..iquo(n, 2)), n = 0..9);
    # second program:
    egf := k-> (x*(exp(x)-1))^k / k!:
    A362369 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A362369(n, k), k=0..iquo(n,2))), n=0..12); # Mélika Tebni, May 10 2023
  • SageMath
    def A362369(n, k):
        return binomial(n, k) * factorial(k) * stirling_number2(n - k, k)
    for n in range(10):
        print([A362369(n, k) for k in range(n//2 + 1)])

Formula

From Mélika Tebni, May 10 2023: (Start)
E.g.f. of column k: (x*(exp(x)-1))^k / k!.
Sum_{k=0..n-1} (-1)^(n+k-1)*T(n+k-1, k) = A000169(n), for n > 0. (End)
Showing 1-3 of 3 results.