cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362789 Triangle read by rows. T(n, k) = FallingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 2, 0, 4, 18, 0, 5, 84, 6, 0, 6, 300, 144, 0, 7, 930, 1500, 24, 0, 8, 2646, 10800, 1200, 0, 9, 7112, 63210, 23400, 120, 0, 10, 18360, 324576, 294000, 10800, 0, 11, 45990, 1524600, 2857680, 352800, 720, 0, 12, 112530, 6717600, 23496480, 7056000, 105840
Offset: 0

Views

Author

Peter Luschny, May 04 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0;
[2] 0, 1;
[3] 0, 2;
[4] 0, 3,    2;
[5] 0, 4,   18;
[6] 0, 5,   84,     6;
[7] 0, 6,  300,   144;
[8] 0, 7,  930,  1500,   24;
[9] 0, 8, 2646, 10800, 1200;
		

Crossrefs

Cf. A362790 (row sums), A362788, A362769.

Programs

  • Maple
    fallingFactorial := (x, n) -> (-1)^n * pochhammer(-x, n):
    T := (n, k) -> fallingFactorial(n - k, k) * Stirling2(n - k, k):
    seq(seq(T(n, k), k = 0..iquo(n,2)), n = 0..12);
  • SageMath
    def A362789(n, k):
        return falling_factorial(n - k, k) * stirling_number2(n - k, k)
    for n in range(10):
        print([A362789(n, k) for k in range(n//2 + 1)])
Showing 1-1 of 1 results.