A362826 Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 8, 8, 5, 1, 1, 1, 16, 21, 21, 7, 1, 1, 1, 32, 56, 84, 39, 11, 1, 1, 1, 64, 153, 331, 206, 92, 15, 1, 1, 1, 128, 428, 1300, 1087, 717, 170, 22, 1, 1, 1, 256, 1221, 5111, 5832, 5512, 1810, 360, 30, 1
Offset: 0
Examples
Array begins: ======================================================= n/k| 1 2 3 4 5 6 7 8 ... ---+--------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 ... 2 | 1 2 4 8 16 32 64 128 ... 3 | 1 3 8 21 56 153 428 1221 ... 4 | 1 5 21 84 331 1300 5111 20144 ... 5 | 1 7 39 206 1087 5832 31949 178486 ... 6 | 1 11 92 717 5512 42601 333012 2635637 ... 7 | 1 15 170 1810 19252 208400 2303310 25936170 ... 8 | 1 22 360 5462 81937 1241302 19107225 299002252 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
- Tad White, Counting Free Abelian Actions, arXiv preprint arXiv:1304.2830 [math.CO], 2013.
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} M(n, m=n)={my(v=vector(m), u=vector(n, n, n==1)); for(j=1, #v, v[j]=concat([1], EulerT(u))~; u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)} { my(A=M(8)); for(n=1, #A~, print(A[n, ])) }
Comments