cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362835 Expansion of e.g.f. 1/(1 + LambertW(x * log(1-x))).

Original entry on oeis.org

1, 0, 2, 3, 56, 270, 4704, 43260, 814736, 11356632, 240848640, 4492204200, 108396245088, 2513538490320, 68878522931568, 1896787592514360, 58622475066067200, 1860520458522196800, 64297710768900261888, 2303738717704104464640
Offset: 0

Views

Author

Seiichi Manyama, May 05 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(x*log(1-x)))))

Formula

a(n) = (-1)^n * n! * Sum_{k=0..floor(n/2)} k^k * Stirling1(n-k,k)/(n-k)!.

A362892 Expansion of e.g.f. 1/(1 + LambertW(-x^2 * (exp(x) - 1))).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 1470, 10122, 47096, 1814472, 25119450, 226527950, 6732015972, 142901684796, 2071229736758, 57596022404130, 1589579741044080, 32832196825559312, 951335638952843826, 31043287459520549910, 838738470701197009820
Offset: 0

Views

Author

Seiichi Manyama, May 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1+LambertW[-x^2(Exp[x]-1)]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 14 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^2*(exp(x)-1)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^k * Stirling2(n-2*k,k)/(n-2*k)!.
a(n) ~ n^n / (sqrt((2+r)*exp(r) - 2) * r^(n+1) * exp(n + 1/2)), where r = 0.640353588740603511543638690178204955926349... is the root of the equation r^2*(exp(r+1) - exp(1)) = 1. - Vaclav Kotesovec, May 19 2025
Showing 1-2 of 2 results.