A362903 Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-tuples of involutions on a (2n)-set that pairwise commute.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 11, 4, 1, 1, 16, 43, 24, 5, 1, 1, 32, 171, 176, 46, 6, 1, 1, 64, 683, 1376, 611, 80, 7, 1, 1, 128, 2731, 10944, 9281, 1864, 130, 8, 1, 1, 256, 10923, 87424, 146445, 54384, 5161, 200, 9, 1, 1, 512, 43691, 699136, 2334181, 1696352, 285939, 13184, 295, 10, 1
Offset: 0
Examples
Array begins: ====================================================== n/k| 0 1 2 3 4 5 6 ... ---+-------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 2 4 8 16 32 64 ... 2 | 1 3 11 43 171 683 2731 ... 3 | 1 4 24 176 1376 10944 87424 ... 4 | 1 5 46 611 9281 146445 2334181 ... 5 | 1 6 80 1864 54384 1696352 53885632 ... 6 | 1 7 130 5161 285939 17562679 1110290303 ... 7 | 1 8 200 13184 1372224 165343616 20774749952 ... 8 | 1 9 295 31532 6101080 1436647664 358238974304 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Crossrefs
Programs
-
PARI
\\ B(n, k) is A022166. B(n, k)={polcoef(x^k/prod(j=0, k, 1-2^j*x + O(x*x^n)), n)} C(k,n) = Vec(1/prod(j=0, min(k-1, logint(n, 2)), (1 - x^(2^j) + O(x*x^n))^B(k,j+1), 1 - x + O(x*x^n))) M(n,m=n) = Mat(vector(m+1, k, C(k-1, n)~)) { my(A=M(7)); for(i=1, #A, print(A[i,])) }
Formula
G.f. of column k: 1/((1 - x)*Product_{j=0..k-1} (1 - x^(2^j))^A022166(k,j+1)).
Comments