cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362826 Array read by antidiagonals: T(n,k) is the number of k-tuples of permutations of [n] which commute, divided by n!, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 8, 8, 5, 1, 1, 1, 16, 21, 21, 7, 1, 1, 1, 32, 56, 84, 39, 11, 1, 1, 1, 64, 153, 331, 206, 92, 15, 1, 1, 1, 128, 428, 1300, 1087, 717, 170, 22, 1, 1, 1, 256, 1221, 5111, 5832, 5512, 1810, 360, 30, 1
Offset: 0

Views

Author

Andrew Howroyd, May 09 2023

Keywords

Comments

T(n,k) is also the number of nonisomorphic (k-1)-tuples of permutations of an n-set that pairwise commute. Isomorphism is up to permutation of the elements of the n-set.

Examples

			Array begins:
=======================================================
n/k| 1  2   3    4     5       6        7         8 ...
---+---------------------------------------------------
0  | 1  1   1    1     1       1        1         1 ...
1  | 1  1   1    1     1       1        1         1 ...
2  | 1  2   4    8    16      32       64       128 ...
3  | 1  3   8   21    56     153      428      1221 ...
4  | 1  5  21   84   331    1300     5111     20144 ...
5  | 1  7  39  206  1087    5832    31949    178486 ...
6  | 1 11  92  717  5512   42601   333012   2635637 ...
7  | 1 15 170 1810 19252  208400  2303310  25936170 ...
8  | 1 22 360 5462 81937 1241302 19107225 299002252 ...
  ...
		

Crossrefs

Columns k=1..4 are A000012, A000041, A061256, A226313.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    M(n, m=n)={my(v=vector(m), u=vector(n, n, n==1)); for(j=1, #v, v[j]=concat([1], EulerT(u))~; u=dirmul(u, vector(n, n, n^(j-1)))); Mat(v)}
    { my(A=M(8)); for(n=1, #A~, print(A[n, ])) }

Formula

Column k is the Euler transform of column k-1 of A160870.
T(n,k) = A362827(n,k) / n!.
G.f. of column k: exp(Sum_{i>=1} x^i*A160870(i,k)/i).
G.f. of column k > 1: 1/(Product_{i>=1} (1 - x^i)^A160870(i,k-1)).

A362904 Number of nonisomorphic ordered triples of involutions on a (2n)-set that pairwise commute.

Original entry on oeis.org

1, 8, 43, 176, 611, 1864, 5161, 13184, 31532, 71264, 153444, 316608, 629236, 1209312, 2255324, 4093056, 7246690, 12542736, 21262582, 35359456, 57767766, 92832784, 146908290, 229169792, 352721676, 536076640, 805132548, 1195771840, 1757278132
Offset: 0

Views

Author

Andrew Howroyd, May 11 2023

Keywords

Comments

Two involutions x,y commute if x*y = y*x. Isomorphism is up to permutation of the elements of the (2n)-set. a(n) also gives the value for a (2n+1)-set.

Crossrefs

Column k=3 of A362903.

Programs

  • PARI
    C(3,30) \\ C(k,n) defined in A362903.

Formula

G.f.: 1/((1 - x)^16*(1 + x)^8*(1 + x^2)).
Showing 1-2 of 2 results.