A362905 Array read by antidiagonals: T(n,k) is the number of n element multisets of length k vectors over GF(2) that sum to zero.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 8, 5, 3, 1, 1, 1, 16, 15, 11, 3, 1, 1, 1, 32, 51, 50, 14, 4, 1, 1, 1, 64, 187, 276, 99, 24, 4, 1, 1, 1, 128, 715, 1768, 969, 232, 30, 5, 1, 1, 1, 256, 2795, 12496, 11781, 3504, 429, 45, 5, 1, 1, 1, 512, 11051, 93600, 162877, 73440, 10659, 835, 55, 6, 1
Offset: 0
Examples
Array begins: ========================================= n/k| 0 1 2 3 4 5 6 ... ---+------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 2 4 8 16 32 64 ... 3 | 1 2 5 15 51 187 715 ... 4 | 1 3 11 50 276 1768 12496 ... 5 | 1 3 14 99 969 11781 162877 ... 6 | 1 4 24 232 3504 73440 1878976 ... 7 | 1 4 30 429 10659 394383 18730855 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Crossrefs
Programs
-
Mathematica
A362905[n_,k_]:=(Binomial[2^k+n-1,n]+If[EvenQ[n],(2^k-1)Binomial[2^(k-1)+n/2-1,n/2],0])/2^k;Table[A362905[n-k,k],{n,0,15},{k,n,0,-1}] (* Paolo Xausa, Nov 19 2023 *)
-
PARI
T(n,k)={(binomial(2^k+n-1, n) + if(n%2==0, (2^k-1)*binomial(2^(k-1)+n/2-1,n/2)))/2^k}
Formula
T(n,k) = binomial(2^k+n-1, n)/2^k for odd n;
T(n,k) = (binomial(2^k+n-1, n) + (2^k-1)*binomial(2^(k-1)+n/2-1, n/2))/2^k for even n.
G.f. of column k: (1/(1-x)^(2^k) + (2^k-1)/(1-x^2)^(2^(k-1)))/2^k.
Comments