A362925 Triangle read by rows: T(n,m), n >= 0, 0 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.
1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 13, 8, 1, 52, 52, 47, 35, 16, 1, 203, 203, 188, 153, 97, 32, 1, 877, 877, 825, 706, 515, 275, 64, 1, 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 2, 1; 5, 5, 4, 1; 15, 15, 13, 8, 1; 52, 52, 47, 35, 16, 1; 203, 203, 188, 153, 97, 32, 1; 877, 877, 825, 706, 515, 275, 64, 1; 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1; 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1; 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= (n, k)-> add(Stirling2(n-k, j)*(j+1)^k, j=0..n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 01 2023
-
Mathematica
A362925[n_, m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}]; Table[A362925[n,m],{n,0,15},{m,0,n}] (* Paolo Xausa, Dec 04 2023 *)
Formula
Sum_{k=0..n} (k+1) * T(n,k) = A040027(n+1). - Alois P. Heinz, Dec 02 2023
Comments