cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362925 Triangle read by rows: T(n,m), n >= 0, 0 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 13, 8, 1, 52, 52, 47, 35, 16, 1, 203, 203, 188, 153, 97, 32, 1, 877, 877, 825, 706, 515, 275, 64, 1, 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth

Keywords

Comments

A variant of A113547 and A362924. See those entries for further information.

Examples

			Triangle begins:
       1;
       1,      1;
       2,      2,      1;
       5,      5,      4,      1;
      15,     15,     13,      8,     1;
      52,     52,     47,     35,    16,     1;
     203,    203,    188,    153,    97,    32,     1;
     877,    877,    825,    706,   515,   275,    64,     1;
    4140,   4140,   3937,   3479,  2744,  1785,   793,   128,    1;
   21147,  21147,  20270,  18313, 15177, 11002,  6347,  2315,  256,   1;
  115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1;
  ...
		

Crossrefs

Row sums are A000110(n+1).
Columns k=0+1,2-5 give A000110, A078468(n-2) (for n>=2), A383052(n-3) (for n>=3), A383053(n-4) (for n>=4), A383054(n-5) (for n>=5).
T(n+j,n) give (for j=0-2): A000012, A000079, A007689.
T(2n,n) gives A367820.

Programs

  • Maple
    T:= (n, k)-> add(Stirling2(n-k, j)*(j+1)^k, j=0..n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 01 2023
  • Mathematica
    A362925[n_, m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}];
    Table[A362925[n,m],{n,0,15},{m,0,n}] (* Paolo Xausa, Dec 04 2023 *)

Formula

Sum_{k=0..n} (k+1) * T(n,k) = A040027(n+1). - Alois P. Heinz, Dec 02 2023