cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A362974 Decimal expansion of Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)).

Original entry on oeis.org

4, 6, 5, 9, 2, 6, 6, 1, 2, 2, 5, 0, 0, 6, 5, 6, 9, 4, 1, 2, 7, 7, 4, 3, 1, 1, 0, 8, 9, 1, 3, 6, 2, 5, 8, 6, 2, 1, 3, 0, 5, 4, 3, 3, 6, 7, 2, 8, 3, 2, 5, 6, 5, 3, 8, 4, 7, 5, 7, 6, 9, 2, 4, 0, 1, 5, 3, 0, 3, 4, 1, 8, 0, 8, 6, 5, 7, 3, 5, 2, 3, 8, 7, 2, 1, 8, 0, 7, 7, 5, 8, 9, 0, 2, 6, 8, 4, 6, 2, 3, 4, 9, 0, 9, 7
Offset: 1

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The coefficient c_0 of the leading term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).

Examples

			4.65926612250065694127743110891362586213054336728325...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Cf. A036966, A090699 (analogous constant for powerful numbers), A244000, A337736, A362973, A362975 (c_1), A362976 (c_2).
Cf. A051904.

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 0, 0, -1, -1}, {0, 0, 0, 4, 5}, m]; RealDigits[(1 + 1/2^(4/3) + 1/2^(5/3)) * (1 + 1/3^(4/3) + 1/3^(5/3)) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n/3] - 1/2^(n/3) - 1/3^(n/3))/n, {n, 4, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
  • PARI
    prodeulerrat(1 + 1/p^4 + 1/p^5, 1/3)

Formula

Equals 1 + lim_{m->oo} (1/m) Sum_{k=1..m} A337736(k).

A362975 Decimal expansion of zeta(3/4) * Product_{p prime} (1 + 1/p^(5/4) - 1/p^2 - 1/p^(9/4)) (negated).

Original entry on oeis.org

5, 8, 7, 2, 6, 1, 8, 8, 2, 0, 8, 1, 3, 8, 4, 2, 3, 9, 1, 0, 7, 4, 1, 3, 8, 1, 4, 2, 6, 6, 7, 8, 3, 5, 6, 1, 1, 4, 8, 6, 2, 6, 4, 3, 1, 1, 0, 8, 2, 9, 3, 5, 3, 5, 1, 7, 0, 7, 9, 8, 0, 4, 6, 6, 9, 0, 3, 9, 8, 2, 0, 5, 3, 5, 0, 1, 1, 2, 5, 3, 5, 6, 8, 6, 3, 3, 7, 5, 7, 9, 1, 7, 5, 1, 3, 0, 1, 2, 1, 3, 1, 6, 8, 4, 3
Offset: 1

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The coefficient c_1 of the second term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).

Examples

			-5.87261882081384239107413814266783561148626431108293...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Programs

  • PARI
    zeta(3/4) * prodeulerrat(1 + 1/p^5 - 1/p^8 - 1/p^9 ,1/4)

A362973 The number of cubefull numbers (A036966) not exceeding 10^n.

Original entry on oeis.org

1, 2, 7, 20, 51, 129, 307, 713, 1645, 3721, 8348, 18589, 41136, 90619, 198767, 434572, 947753, 2062437, 4480253, 9718457, 21055958, 45575049, 98566055, 213028539, 460160083, 993533517, 2144335391, 4626664451, 9980028172, 21523027285, 46408635232, 100053270534
Offset: 0

Views

Author

Amiram Eldar, May 11 2023

Keywords

Comments

The number of cubefull numbers not exceeding x is N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)), where c_0 (A362974), c_1 (A362975) and c_2 (A362976) are constants (Bateman and Grosswald, 1958; Finch, 2003).
The digits of a(3k) converge to A362974 as k -> oo. - Chai Wah Wu, May 13 2023

Examples

			There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.

Crossrefs

Similar sequences: A070428, A118896.

Programs

  • Mathematica
    a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0]
  • Python
    from math import gcd
    from sympy import factorint, integer_nthroot
    def A362973(n):
        m, c = 10**n, 0
        for x in range(1,integer_nthroot(m,5)[0]+1):
            if all(d<=1 for d in factorint(x).values()):
                for y in range(1,integer_nthroot(z:=m//x**5,4)[0]+1):
                    if gcd(x,y)==1 and all(d<=1 for d in factorint(y).values()):
                        c += integer_nthroot(z//y**4,3)[0]
        return c # Chai Wah Wu, May 11-13 2023

Extensions

a(23)-a(31) from Chai Wah Wu, May 11 2023

A378485 Decimal expansion of Product_{p prime} (1 + 1/p^(5/4) + 1/p^(3/2) + 1/p^(7/4)).

Original entry on oeis.org

9, 6, 6, 9, 4, 7, 5, 4, 8, 4, 3, 8, 2, 3, 6, 8, 1, 0, 6, 5, 0, 0, 6, 6, 6, 9, 4, 3, 2, 0, 0, 8, 1, 7, 9, 3, 8, 0, 9, 2, 7, 2, 4, 8, 4, 4, 4, 7, 6, 3, 8, 8, 8, 7, 0, 7, 8, 4, 6, 2, 6, 5, 7, 1, 3, 9, 3, 3, 9, 3, 8, 6, 8, 1, 2, 5, 1, 9, 3, 5, 5, 6, 1, 1, 1, 9, 6, 3, 1, 4, 2, 8, 4, 0, 3, 0, 3, 3, 4, 1
Offset: 1

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			9.669475484382368106500666943200817938092724844476...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^5 + 1/p^6 + 1/p^7, 1/4)

A378486 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) + 1/p^(8/5) + 1/p^(9/5)).

Original entry on oeis.org

1, 9, 4, 4, 5, 5, 7, 6, 0, 8, 3, 9, 0, 0, 5, 7, 1, 1, 3, 9, 0, 8, 0, 0, 8, 9, 3, 2, 8, 9, 9, 1, 3, 5, 4, 6, 4, 7, 1, 1, 9, 5, 0, 5, 0, 7, 5, 4, 8, 5, 7, 0, 8, 0, 2, 7, 3, 0, 8, 9, 8, 6, 3, 0, 3, 5, 8, 9, 5, 9, 6, 1, 5, 4, 2, 5, 0, 2, 5, 5, 8, 8, 6, 7, 0, 4, 9, 7, 6, 3, 2, 5, 6, 6, 2, 9, 7, 7, 3, 5
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			19.445576083900571139080089328991354647119505075485...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^6 + 1/p^7 + 1/p^8 + 1/p^9, 1/5)

A378487 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) - 1/p^2 - 1/p^(11/5) - 1/p^(12/5)) (negated).

Original entry on oeis.org

1, 6, 9, 7, 8, 7, 8, 1, 4, 8, 3, 4, 3, 5, 2, 4, 3, 9, 9, 2, 7, 9, 9, 7, 0, 6, 2, 6, 1, 4, 0, 3, 1, 3, 3, 2, 3, 4, 1, 2, 5, 8, 7, 3, 3, 4, 2, 9, 5, 9, 5, 4, 0, 4, 6, 7, 5, 1, 4, 1, 2, 5, 6, 6, 4, 9, 0, 8, 1, 4, 6, 0, 9, 6, 5, 7, 0, 6, 1, 6, 9, 0, 5, 5, 4, 3, 0, 4, 7, 2, 7, 4, 9, 3, 8, 6, 3, 1, 1, 8
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			-16.978781483435243992799706261403133234125873342959...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    zeta(4/5)*prodeulerrat(1 + 1/p^6 + 1/p^7 - 1/p^10 - 1/p^11 - 1/p^12, 1/5)
Showing 1-6 of 6 results.