A362995 Triangle read by rows. T(n, k) = [x^k] lcm({i + 1 : 0 <= i <= n}) * (Sum_{u=0..k} ( Sum_{j=0..u} x^j * binomial(u, j) * (j + 1)^n ) / (u + 1)).
1, 3, 2, 11, 28, 18, 25, 184, 351, 192, 137, 2608, 11097, 16128, 7500, 147, 6816, 57591, 166912, 193750, 77760, 1089, 118464, 1865511, 9588736, 20843750, 20062080, 7058940, 2283, 567936, 16015401, 136921088, 495546875, 858003840, 704129265, 220200960
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 3, 2; [2] 11, 28, 18; [3] 25, 184, 351, 192; [4] 137, 2608, 11097, 16128, 7500; [5] 147, 6816, 57591, 166912, 193750, 77760; [6] 1089, 118464, 1865511, 9588736, 20843750, 20062080, 7058940; [7] 2283, 567936, 16015401, 136921088, 495546875, 858003840, 704129265, 220200960;
Links
- Peter Luschny, An integer triangle for representing the Bernoulli numbers, Mathematics Stack Exchange, May 2023.
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Maple
R := (n, x) -> add(add(x^j*binomial(u, j)*(j + 1)^n, j = 0..u)/(u + 1), u=0..n): CoeffList := p -> PolynomialTools:-CoefficientList(p, x): poly := (n, x) -> ilcm(seq(i, i = 1..n+1)) * R(n, x): seq(print(CoeffList(poly(n, x))), n = 0..7);
-
SageMath
def A362995row(n: int) -> list[int]: s = add((1 / (u + 1)) * add(x^j * binomial(u, j) * (j + 1)^n for j in (0..u)) for u in (0..n)) l = lcm(i + 1 for i in (0..n)) return (s * l).list() for n in (0..7): print(A362995row(n))
Comments