A363037 Expansion of Sum_{k>0} x^k / (1 + x^(4*k)).
1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 2, 0, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 2, 2, 0, 1, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 2, 3, 1, 0, 2, 1, 0, 0
Offset: 1
Keywords
Programs
-
Mathematica
a[n_] := DivisorSum[n, (-1)^((# - 1)/4) &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
-
PARI
a(n) = sumdiv(n, d, (d%4==1)*(-1)^((d-1)/4));
Formula
G.f.: Sum_{k>0} (-1)^(k-1) * x^(4*k-3) / (1 - x^(4*k-3)).
a(n) = Sum_{d|n, d==1 (mod 4)} (-1)^((d-1)/4).