cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A364011 Expansion of Sum_{k>0} x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 2, 2, 1, -1, 1, 1, 2, -1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 0, 2, -1, 1, 0, 2, 0, 2, 2, 2, -2, 1, 2, 2, -1, 1, 0, 1, -1, 3, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, -1, 2, 2, 2, -2, 2, 0, 2, -1, 1, 0, 1, 0, 2, 2, 2, 0, 2, 2, 2, -3, 1, 0, 1, 0, 2, 2, 1, -2, 1, 0, 4, -1, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%3==1)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(3*k-2) / (1 - x^(3*k-2)).
a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) = -Sum_{d|n, d==1 (mod 3)} (-1)^d.

A364043 Expansion of Sum_{k>0} x^k / (1 + x^(5*k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, -1, 1, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 2, -1, 1, 1, 1, 0, 2, -1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, -2, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^# &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%5==1)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-4) / (1 - x^(5*k-4)).
a(n) = -Sum_{d|n, d==1 (mod 5)} (-1)^d.

A364031 Expansion of Sum_{k>0} k * x^k / (1 + x^(4*k)).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 7, 8, 10, 8, 11, 12, 12, 14, 12, 16, 18, 20, 19, 16, 20, 22, 23, 24, 21, 24, 30, 28, 28, 24, 31, 32, 34, 36, 28, 40, 36, 38, 36, 32, 42, 40, 43, 44, 40, 46, 47, 48, 50, 42, 54, 48, 52, 60, 44, 56, 58, 56, 59, 48, 60, 62, 67, 64, 48, 68, 67, 72, 68, 56, 71, 80, 74, 72, 63, 76, 76, 72, 79
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^((# - 1)/4) * n/# &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*(-1)^((d-1)/4)*n/d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(4*k-3) / (1 - x^(4*k-3))^2.
a(n) = Sum_{d|n, d==1 (mod 4)} (-1)^((d-1)/4) * (n/d).

A364047 Expansion of Sum_{k>0} x^k / (1 + x^(6*k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 1, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^((#-1)/6) &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%6==1)*(-1)^((d-1)/6));

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(6*k-5) / (1 - x^(6*k-5)).
a(n) = Sum_{d|n, d==1 (mod 6)} (-1)^((d-1)/6).
Showing 1-4 of 4 results.